
Voice Converter Using DeepSpeech and Tacotron

Sreenithy Chandran
1213391684

Arizona State University

Satyajit Giri
1213037993

Arizona State University

November 5, 2019

Abstract
Usually Voice Converters use a set of training and test-
ing example pairs to train a Machine Learning model like
a Gaussian Mixture Model (GMM) or Deep Neural Net-
work (DNN). In many edge devices or applications, it is
impractical to acquire this data. In our project we pro-
pose a method to remove the need to collect audio sam-
ples from the user by combining a DeepMind implemen-
tation with a Tacotron implementation. Consequently, we
are able to convert input speaker’s audio signal to text
and used this text to synthesize speech in the voice that
Tacotron was trained on. In addition, we show that our
proposed pipeline also significantly reduces the need to
train on the output user’s voice. Last of all, we incorpo-
rate the initial project proposal of reducing model size and
computational cost by pruning the model, quantizing the
weights and creating heap maps.

1 Introduction
Traditionally text to speech synthesis involves a multiple
stage process, including text analysis front end, an acous-
tic model and an audio synthesis model. Towards End-
to-End speech synthesis was (Tacotron) (4) was created
by researchers at Google to replace the complex multiple
stage approach to speech synthesis with an end to end sys-
tem powered by deep learning. The first Tacotron led to
an in increase the mean opinion score on US English and
was substantially faster than other state of the art text to
speech algorithms.

Similar to Tacotron, DeepSpeech (2) aims to remove
the complicated speech recognition pipeline. It’s input

is a series of overlapping and windowed frames from
which spectrogram are taken. Each spectrogram is passed
through a series of dense layers to extract good features
which are then shared in a Bi-directional Recurrant Neu-
ral Network (BRNN) that looks at relationships between
frames to determine which character is most likely to oc-
cur at that frame.

We believe that the next evolution of text to speech
algorithms will be minimizing the algorithms such that
it leads to a decrease in memory space and increase in
speed. Most deep learning platforms provide tools that
help you do this. In particular, TensorFlow Lite has mul-
tiple methods to trim, prune, quantize and memory map
models robustly.

Finally, we explore various resources and source code
to Voice Conversion. We opt into Sprocket’s (7) GMM
model based approach because it yields good results even
with only 30 input audio voices and 30 output audio
voices. We have replaced the input audio voice with
Tacotron synthesized audio samples, thus removing the
need to have the an input user say the same contents in
the audio clips of the output user.

2 Division of Work

We roughly divide the project into four stages: Auto-
matic Speech Recognition (ASR), Text to Speech Synthe-
sis (TTS), reducing model weights and increasing model
speeds, and finally Voice to Voice Conversion. While
both team members were actively involved in both stages:
Satyajit was responsible for ASR and model minimization
whereas Sreenithy was responsible for TTS and Voice to

1



Voice Conversion.

3 Automatic Speech Recognition
Using DeepSpeech

3.1 Traditional ASR
Speech Recognition is a challenging problem that was tra-
ditionally solved by using a multistage process shown in
Figure 1. It consists of a Acoustic Model that converts
speech to phonemes. Then we pass the phones through
a phoneme model that assigns probability of that sound
corresponding to a certain character. Finally, these char-
acters are passed through a language model that predicts
how likely certain words and letters are to exist together
to produce the final text. This multistage process requires
expert knowledge at each stage. For example, for just
the feature extractor block, many signal processing and
speech experts have spent decades trying to determine the
best features to describe a speech signal. Consequently
often a traditional ASR pipeline is susceptible to overfit-
ting and is not robust to speaker variation, voice variation
and noise.

Figure 1: Pipeline of the traditional multistage approach
to ASR

3.2 DeepSpeech
In 2014, researchers at Baidu, introduced the concept
of DeepSpeech that attempts to replace this multistage
pipeline with one end to end deep learning based model
(2). We see in Figure 2 that the model starts by taking
overlapping frames of the Mel frequency spectrogram of
the speech signal. These frames are then passed through
either layers of convolution or fully connected layers,
where the output is similar to the features that come out
of the previous Phoneme Model. Finally, this features
are passed through a BRNN, where relationships between
features in adjacent frames are studied to finally predict

what character at that location would lead to such a com-
bination of features.

Figure 2: DeepSpeech Model Architecture

3.3 Implementation

We cloned the Mozilla’s DeepSpeech repository from
github (8) and implemented on Tensorflow. We used a
pretrained model, but quantized, trimmed, and memory
mapped the model. We observed that the model worked
great even after beind reduced for inference. One disap-
pointment was there was no way to implement this model
in real time.

3.4 Results

Our results are highlighted in the figure below [Figure 3].
They show that the model was highly accurate and even
could correctly identify words from tongue twisters like
”she sells seashells on the seashore”.

Figure 3: DeepSpeech Sample outputs

2



4 Text to Speech Synthesis Using
Tacotron

Tacotron, an integrated end-to-end generative TTS model
that takes a character sequence as input and outputs the
corresponding spectrogram. Tacotron does not need hand
engineered linguistic features or complex components
such as an HMM aligner. It can be trained from scratch
with random initialization. The backbone of Tacotron is a
seq2seq model with attention.

4.1 Model Architecture
At a high-level, this model takes characters as input and
produces spectrogram frames, which are then converted
to waveforms. We describe the components of it below:
CBFG Module
CBHG consists of a bank of 1-D convolutional filters, fol-
lowed by highway networks and a bidirectional gated re-
current unit (GRU). CBHG is a powerful module for ex-
tracting representations from sequences.
Encoder
The goal of the encoder is to extract robust sequential rep-
resentations of text. The input to the encoder is a char-
acter sequence, where each character is represented as a
one-hot vector and embedded into a continuous vector.
We then apply a set of non-linear transformations, col-
lectively called a pre-net, to each embedding. A CBHG
module transforms the prenet outputs into the final en-
coder representation used by the attention module.
Decoder
A content-based tanh attention decoder is used, where
a stateful recurrent layer produces the attention query at
each decoder time step. We concatenate the context vec-
tor and the attention RNN cell output to form the input
to the decoder RNNs. The output of the decoder is a lin-
ear scale spectrogram which is passed through the Griffin
Lim Reconstruction to give a waveform.

4.2 Preprocessing data for training Taca-
tron

For preprocessing the data the following steps are to be
adopted

• Obtain audio, text pairs for training

• Get the Linear Scale Spectogram

• Obtain the Mel Scale Spectogram

4.3 Results

We used the trained weights of the tacotron model and
quantise it using the memory mapped method, this is then
used for inference. We observed that the TTS model
works well for short sentences. Even tongue twisters that
are hard for people to speak is synthesised clearly how-
ever, for very sentences containing more than 10 word the
model fails.

Figure 4: Model architecture. The model takes characters
as input and outputs the corresponding raw spectrogram,
which is then fed to the Griffin-Lim reconstruction algo-
rithm to synthesize speech.

Figure 5: Linear power spectrum and Mel spectrum of a
frame

3



5 Reducing Model Size and Increas-
ing Speed for Production

5.1 Pruning and Trimming
Generally pruning refers to exploring redundancy in neu-
ral network after training and removing redundant con-
nections. We propose to prune redundancy between chan-
nels of a convolution filter by ranking the effect of each
layer on our performance metric. We will remove chan-
nels that have little impact on accuracy thus reducing the
computational cost and size of the model.

5.2 Quantization
Quantization was a method developed to bring deep learn-
ing capabilities to devices at the edge. Edge devices
have several characteristics: they have smaller computa-
tional abilities and are constrained in power and memory.
For these reasons, most Deep Neural Networks (DNNs),
which require significant memory to store the models and
large amounts of processing capabilities become unsuit-
able for these edge devices. One method to reduce a neu-
ral network is quantization, where we take convolution
layers populated with 32 bit floating numbers and quan-
tize it to 8 bits integers.

Krishnamoorthi highlighted the major benefits, designs
and approaches to quantization in (3). We highlight the
primary benefits below:

• Model Size Model sizes are reduced by a factor of 4.

• Accuracy Accuracy drops by 2% from quantization.

• Speed A quantized model is 2 to 3 times faster.

5.3 Memory Mapping
Traditionally, when we load a model, we allocate an area
of memory on the heap and then copy bytes from disk
into it. When we memory map a model we exploit mecha-
nisms in the OS and instead the entire contents of a file ap-
pear directly in memory. Some benefits of memory map-
ping are highlighted below:

• Model Size Speeds loading

• Accuracy Reduces paging (increases performance)

(a) (b)

Figure 6: Three times reduction in DeepSpeech and
Tacotron size

(a) (b)

Figure 7: Both load time and inference have been reduced

• Speed Does not count towards RAM budget for your
app

5.4 Results

After getting the checkpoint model in Tensorflow, we first
trimmed and quantized both the DeepSpeech model and
the Tacotron model (Figure 6a, 6b). In both cases we ob-
served an almost 3x reduction in models size. This closely
matches the reduction of 4x that was predicted by Krish-
namoorthy.

We then took the trimmed model and then memory
mapped it. We noticed significant speed ups both in load-
ing the model and running forward inference when we
used the memory mapped model.

4



6 Voice Conversion Model
Statistical voice conversion (VC)() is a technique to con-
vert specific non- or paralinguistic information while
keeping linguistic information unchanged, and speaker
conversion has been studied as a typical application of VC
for a few decade. In order to overcome the need for hav-
ing large dataset for source and target speakers each say-
ing the same sentences we make obtain the source wave
file pass it through the Deep Speech model and then pass
the obtained sentence as the input to the Tacotron model
which gives the output file in the Tacotron trained voice.
Having obtained this it is then used as the input during in-
ference for a voice conversion model that has already been
trained for the original Target speaker voice and Tacaotron
voice to get the sentence as spoken by the target speaker.
The voice conversion model used here is GMM trained
and we make use of the sprocket library.

6.1 GMM-based VC methods in sprocket
In this section, we describe details of a GMM-based VC
method using parallel speech utterances of the source and
target speakers (i.e., a parallel dataset), focusing on two
typical methods: 1) maximum likelihood parameter gen-
eration (MLPG) considering the global variance (GV)
based on the GMM 2) vocoder-free VC using the log-
spectral differential (DIFFVC) which have been imple-
mented in sprocket.

6.2 Conversion process
For the conversion process, the acoustic features of the
source speaker are converted into those of the target
speaker using the trained GMM. As the acoustic feature
to be converted in sprocket, F0 and the mel-cepstrum are
used. Other factors such as the aperiodicity, speaking rate,
the temporal structure of the F0 trajectory, and the power
trajectory are retained as those of the source voice. Note
that arbitrary utterances of the source speaker can be con-
verted into those of the target speaker.

6.3 Training process
Figure shows the training process of the GMM-based VC
method. For the training process, the GMM-based VC

(a) (b)

Figure 8: Power histogram of a)Tacotron speaker
b)Obama voice

method carries on following steps: 0) preparation of the
parallel speech dataset, 1) acoustic feature extraction, 2)
calculation of acoustic feature statistics, 3) time align-
ment between the source and target feature vectors, and
4) GMM modeling

6.4 Results

Inorder to train the voice conversion model between Taca-
tron speech and Obama speech. We downloaded a Obama
speech and the waveforms are stored in not a single wave-
form file but several waveform files by dividing into sev-
eral utterances of about 5 seconds each. In all we have 30
samples for training Then we obtain the waveforms of the
tacotron with the same sentences.
Setting of the speaker-dependent parameters
The F0 range is a representative speaker-dependent pa-
rameter for acoustic feature extraction. For normal
speech, the F0 range is relatively well approximated as
a unimodal distribution. In the F0 extraction process, F0
values of the double and half harmonics are sometimes
extracted owing to the analysis errors, and these errors
significantly degrade the sound quality of the converted
voice. To avoid such errors, the F0 range for each speaker
is specified in accordance with the F0 histograms. Based
on the figure 3), we manually change the values of mini-
mum F0 and maximum F0 of each speaker
Setting of the pair-dependent parameters
Because the number of mixture components of the GMM
strongly affects the conversion quality, it should be care-
fully set in accordance with the number of training utter-
ances. We use the number of mixture components as 8
when the number of training utterances is 30

5



(a) (b)

Figure 9: F0 histogram of a)Tacotron speaker b)Obama
voice

Figure 10: Training process of the GMM-based VC
method using a parallel dataset.

7 Results
The first step of the voice converter pipline is to obtain the
speech of sample X and pass it through the Deep Speech
model and then pass the obtained sentence as the input
to the Tacotron model which gives the output file in the
Tacotron trained voice. Having obtained this it is then
used as the input during inference for a voice conversion
model that has already been trained for the original Tar-
get speaker voice and Tacaotron voice to get the sentence
as spoken by the target speaker. All the converted voice
samples are available in the .zip file.

8 Conclusion
We initially set out to reduce model size and increase
inference speed of a Tacotron to make it more suitable

for edge devices. We achieved that fairly quickly using
Tensorflow commands. We then used the DeepSpeech
model to recognize speech as text, a Tacotron model
to convert the text into a common synthetic voice, and
trained a sprocket model to convert that synthetic voice
to Obama’s. Our output can definitely by identified as
synthetic, but it is undeniable that it is Obama-like. We
believe that using a better TTS model (we suggest the
Tacotron 2) would lead to better outputs. We also think
that the Sprocket was trained on simplistic features like
MFCCs and can be expanded to include prosody based
features to make the audio sound more realistic.

References
[1] K. Kobayashi, T. Toda, S. Nakamura, ”F0 transforma-

tion techniques for statistical voice conversion with direct
waveform modification with spectral differential,” Proc.
IEEE SLT, pp. 693-700, Dec. 2016

[2] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates,
A. Y. Ng., “Deep Speech: Scaling up end-to-endspeech
recognition”, arXiv:1412.5567v2 [cs.CL] 19 Dec 2014

[3] K. R. Krishnamoorthi, “Quantizing deep convolu-
tional networks for efficient inference: A whitepaper,”
arXiv:1806.08342v1

[4] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J.
Weiss,N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q.
Le,Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous,
Tacotron:Towards end-to-end speech synthesis, in Proc.
Interspeech,Aug. 2017, pp. 40064010.

[5] Kobayashi, Kazuhiro, and Tomoki Toda. ”sprocket:
Open-source voice conversion software.” Proc. Odyssey
2018 The Speaker and Language Recognition Workshop.
2018.

[6] https://github.com/keithito/tacotron

[7] https://github.com/k2kobayashi/sprocket

[8] https://github.com/mozilla/DeepSpeech

6


	Introduction
	Division of Work
	Automatic Speech Recognition Using DeepSpeech
	Traditional ASR
	DeepSpeech
	Implementation
	Results

	Text to Speech Synthesis Using Tacotron
	Model Architecture
	Preprocessing data for training Tacatron
	Results

	Reducing Model Size and Increasing Speed for Production
	Pruning and Trimming
	Quantization
	Memory Mapping
	Results

	Voice Conversion Model
	GMM-based VC methods in sprocket
	 Conversion process
	Training process
	Results

	Results
	Conclusion

