
Object Detection on Point Cloud data

Sreenithy Chandran
Arizona State University

Tempe, Arizona
schand56@asu.edu

Shenbagaraj Kannapiran
Arizona State University

Tempe, Arizona
shenbagaraj@asu.edu

Abstract

With the abundance of Light Detection And Rang-
ing(LIDAR) sensor data and the expanding self driving car
industry carrying out accurate object detection is central
to improve the performance and safety of autonomous ve-
hicles. However point cloud data is highly sparse and this
sparsity varies from one LIDAR to another and there is a
need to study how adaptable object detection algorithms to
data from different sensors. Due to the expensive nature of
high end LIDAR this work aims to explore if a a network
trained using a standard dataset like KITTI could be used
for inference with a point cloud data from a 2D LIDAR that
is modified to work as a 3D LIDAR. Additionally we also
aim to explore if the average precision varies when the in-
put fed to the network changes. We make use of Complex
YOLO architecture which is a state of the art real-time 3D
object detection network to train the KITTI dataset.

1. Introduction
Point cloud processing is becoming more and more im-

portant for autonomous driving due to the strong improve-
ment of automotive Lidar sensors in the recent years. The
sensors of suppliers are capable to deliver 3D points of the
surrounding environment in real-time. The advantage is a
direct measurement of the distance of encompassing objects
[?]. This allows us to develop object detection algorithms
for autonomous driving that estimate the position and the
heading of different objects accurately in 3D Compared to
images, Lidar point clouds are sparse with a varying density
distributed all over the measurement area[7, 2, 12, 3]. Those
points are unordered, they interact locally and could mainly
be not analyzed isolated. Point cloud processing should al-
ways be invariant to basic transformations[11].

In general, object detection and classification based on
deep learning is a well known task and widely established
for 2D bounding box regression on images [9, 6, 10, 1].
Research focus was mainly a tradeoff between accuracy
and efficiency. In regard to automated driving, efficiency

is much more important. Therefore, the best object detec-
tors are using region proposal networks (RPN) or a similar
grid based RPN-approach. Those networks are extremely
efficient, accurate and even capable of running on a ded-
icated hardware or embedded devices. Object detections
on point clouds are still rarely, but more and more impor-
tant. Those applications need to be capable of predicting
3D bounding boxes. Currently, there exist mainly three dif-
ferent approaches using deep learning :

1. Direct point cloud processing using Multi-Layer-
Perceptrons [7, 8]

2. Translation of Point-Clouds into voxels or image
stacks by using Convolutional Neural Networks [2, 12,
3]

3. Combined fusion approaches [2, 5]

2. Related Work
Recently, Frustum-based Networks [7] have shown high

performance on the KITTI Benchmark suite. The model
is ranked1 on the second place either for 3D object detec-
tions, as for birds-eye-view detection based on cars, pedes-
trians and cyclists. This is the only approach, which directly
deals with the point cloud using Point-Net [10] without us-
ing CNNs on Lidar data and voxel creation. However, it
needs a pre-processing and therefore it has to use the cam-
era sensor as well. Based on another CNN dealing with the
calibrated camera image, it uses those detections to mini-
mize the global point cloud to frustum-based reduced point
cloud. This approach has two drawbacks: i). The mod-
els accuracy strongly depends on the camera image and its
associated CNN. Hence, it is not possible to apply the ap-
proach to Lidar data only; ii). The overall pipeline has to
run two deep learning approaches consecutive, which ends
up in higher inference time with lower efficiency. The ref-
erenced model runs with a too low frame-rate at approxi-
mately 7fps on a NVIDIA GTX 1080i GPU [1]. In con-
trast, Zhou et al. [3] proposed a model that operates only on
Lidar data. In regard to that, it is the best ranked model on

1

KITTI for 3D and birds-eyeview detections using Lidar data
only. The basic idea is an end-to-end learning that operates
on grid cells without using hand crafted features. Grid cell
inside features are learned during training using a Pointnet
approach [10]. On top builds up a CNN that predicts the 3D
bounding boxes. Despite the high accuracy, the model ends
up in a low inference time of 4fps on a TitanX GPU [3].
Another highly ranked approach is reported by Chen et al.
[5]. The basic idea is the projection of Lidar point clouds
into voxel based RGB-maps using handcrafted features, like
points density, maximum height and a representative point
intensity [9]. To achieve highly accurate results, they use a
multi-view approach based on a Lidar birds-eye-view map,
a Lidar based front-view map and a camera based front-
view image. This fusion ends up in a high processing time
resulting in only 4fps on a NVIDIA GTX 1080i GPU. An-
other drawback is the need of the secondary sensor input
(camera).

3. Contributions
The contributions of the work is two fold :

1. Generate a single birds’ eye view and 2D point map
of point cloud data for KITTI dataset and feed that as
input to the Complex YOLO networkto perform object
detection on evaluate which of the two inputs perform
better

2. Evaluate the possibility of using a low cost 2D LIDAR
as an alternate to 3D LIDAR

4. Complex YOLO
The Complex-YOLO network takes a 2D image(birds

eye view or panaroma view) as input. It uses a simpli-
fied YOLOv2 [9] CNN architecture Fig 1(B), extended by
a complex angle regression and E-RPN, to detect accurate
multi-class oriented 3D objects.
Euler-Region-Proposal
The E-RPN parses the 3D position bx,y object dimensions
(width bwand length bl) as well as a probability p0, class
scores p1...pn and finally its orientation bφ from the incom-
ing feature map. In order to get proper orientation the algo-
rithm has an added complex angle arg(|z|eib) to it:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bl = ple
tl

bφ = arg(|z|eibφ) = arctan2(tim, tre)

With the help of this extension the E-RPN estimates accu-
rate object orientations based on an imaginary and real frac-
tion directly embedded into the network. For each grid cell

Figure 1. Complex YOLO architecture pipeline (A) The 2D image
is fed into the CNN The E-RPN grid runs simultaneously on the
last feature map and predicts five boxes per grid cell. Each box
prediction is composed by the regression parameters t and object
scores p with a general probability p0 and n class scores p1...pn.
(B)The model has 18 convolutional and 5 maxpool layers, as well
as 3 intermediate layers for feature reorganization respectively.

(32x16) we predict five objects including a probability score
and class scores resulting in 75 features each, visualized in
Fig. 1(A)
Anchor Box Design
The YOLOv2 object detector predicts five boxes per grid
cell. All were initialized with beneficial priors, i.e. anchor
boxes, for better convergence during training. Due to the
angle regression, the degrees of freedom, i.e. the number of
possible priors increased, but we did not enlarge the num-
ber of predictions for efficiency reasons. Hence, we defined
only three different sizes and two angle directions as priors,
based on the distribution of boxes within the KITTI dataset:
i) vehicle size (heading up); ii) vehicle size (heading down);
iii) cyclist size (heading up); iv) cyclist size (heading down);
v) pedestrian size (heading left).
Complex Angle Regression
The orientation angle for each object bφ can be computed
from the responsible regression parameters tim and tre,
which correspond to the phase of a complex number. The
angle is given simply by using arctan2(tre, tim). On one
hand, this avoids singularities, on the other hand this re-
sults in a closed mathematical space, which consequently
has an advantageous impact on generalization of the model.
We can link our regression parameters directly into the loss

2

Figure 2. Birds eye view Map

function. The loss function L is based on the the concepts
from YOLO and YOLOv2, who defined LY oloas the sum of
squared errors using the introduced multi-part loss.

5. Point Cloud Preprocessing
The 3D point cloud of a single frame, acquired by

Velodyne HDL64 laser scanner [4], is converted into a
single birds-eye-view map, covering an area of 80m x
40m Fig. 6 directly in front of the origin of the
sensor and panaroma view obtained using the follow-
ing hardware related specifications field of view (Vertical)
+2deg to − 24.9 deg, angular resolution: 0.4 deg, field of
view(Horizontal) 360 deg,Angular Resolution(Horizontal)
0.08 deg−0.35 deg .(5Hz - 20Hz) The panoroma image is
given in Fig 3

The goal of this work is to evaluate whether a birds eye
view of a panaroma view would serve to be a better repre-
sentation of the sparse point cloud data to get a better object
detection result. From the KITTI dataset [4] we obtain four
different files 4 different types of files from the KITTI 3D
Objection Detection dataset as follows are used in the arti-
cle.

1. camera 2 image (.png)

2. camera 2 label (.txt)

3. calibration (.txt)

4. velodyne point cloud (.bin)

The image files are regular png file and can be displayed
by any PNG aware software. The label files contains the
bounding box for objects in 2D and 3D in text. Each row
of the file is one object and contains 15 values , including
the tag (e.g. Car, Pedestrian, Cyclist). The 2D bounding
boxes are in terms of pixels in the camera image . The 3D
bounding boxes are in 2 co-ordinates. The size (height,

weight, and length) are in the object co-ordinate , and the
center on the bounding box is in the camera co-ordinate.

The point cloud file contains the location of a point and
its reflectance in the lidar co-ordinate. The calibration file
contains the values of 6 matrices

1. P03: The Px matrices project a point in the rectified
referenced camera coordinate to the camera x image

2. R0 rect: R0 rect is the rectifying rotation for refer-
ence coordinate (rectification makes images of mul-
tiple cameras lie on the same plan)

3. Tr velo to cam : maps a point in point cloud coordi-
nate to reference co-ordinate

4. Tr imu to velo: maps a point in camera coordinate to
velodyne co-ordinate

The different coordinate systems used in this evaluation is
given fig below. Using this datset we obtained the birds eye
view and the panaroma view of the bin file. When obtaining
the birds eye view our region of processing is restricted.

6. Experimental Setup
In order to obtain 3D point cloud data on any environ-

ment a low cost 2D RPlidar A1 was used. This 2D lidar can
perform a 360-degree scan of the environment about a sin-
gle plane. However, in order to obtain a 3D point cloud data,
the lidar setup was attached to an external setup to sweep
the environment. This addon setup consists of 3D printed
attachments added to the 2D lidar which enables it to rotate
about an axis which provides the elevation angle. The 2D
lidar gives two measurable reading one being azimuth an-
gle and other being the depth of the reflected surface for the
azimuth angle measured at any instant. This is supported by
a third parameter the elevation angle which is facilitated by
the modified setup and it is driven by servo motor to obtain
precise angles. The servo motor is connected to a teensy
micro-controller which is in turn connected to raspberry pi 3
through a USB port. The reason for using teensy over rasp-
berry pi to control the servo lies on the fact that raspberry pi
does not possess any analog GPIO pins making the control
of servo units through the available digital pins which uses
a PWM based system to drive the system making it less ac-
curate and prone to jitters in the servo system comprising
the overall efficiency and accuracy of the system. In or-
der to overcome this issue teensy microcontroller was used
which has good analog pins to drive the servo system. The
servo system was driven at 1-degree steps from a range of
-30 to 70 degrees to obtain only the region of interest (done
similar to velodyne lidar). Finally, the data obtained is sent
to the raspberry pi through usb port which in turn is send
to the host pc using ad-hoc network. This enables the user

3

Figure 3. Panaroma Map

Figure 4. The different coordinate systems used in the evaluation

to wirelessly control the servo system. However, it is im-
portant to note that this 2D modified 3D point cloud lidar
does not support real-time 3D point cloud data collection
and works only on static scenarios.

6.1. Data Collection

The data obtained consists of elevation angle from the
servo, azimuth angle and depth value from the lidar which is
the converted to XYZ co-ordinate system using the equation
below and explained in fig

X = ρsinθcosφ

Y = ρsinθsinφ

Z = ρcosθ

This XYZ point cloud data is plotted using scatter plot in
MATLAB as showin in figure 8 . In order to get more vi-
sual sense of the depth RGB map is also added to the point
cloud as shown in figure 7. The scatter obtained is sent to
the Complex YOLO neural network to perform object de-
tection. Moreover it is worthy note that the output obtained
from this modified 2D lidar setup produces more scaled im-
ages as they have less range (6m) as compared to velodyne
lidar data which has a range of 120m.

Figure 5. 2D LIDAR modified to collect 3D point cloud data

Figure 6. Representation of the point cloud data in terms of the
elevation angle, azimuth angle and depth value

7. Results

We evaluated Complex-YOLO on the challenging KITTI
object detection benchmark [4], which is divided into three
subcategories 2D, 3D and birds-eye-view object detection
for Cars, Pedestrians and Cyclists. Each class is evaluated

4

Figure 7. Sample point cloud data of an indoor environment col-
lected from the 2D LIDAR

Figure 8. Birds eye view of sample point cloud data of an indoor
environment collected from the 2D LIDAR

based on three difficulty levels easy, moderate and hard con-
sidering the object size, distance, occlusion and truncation.
This public dataset provides 7,481 samples for training in-
cluding annotated ground truth and 7,518 test samples with
point clouds taken from a Velodyne laser scanner, where
annotation data is private. Note that we focused on birds-
eye-view and panaroma view and perform only 2D box gen-
eration.

7.1. Training Details

We trained our model from scratch via stochastic gradi-
ent descent with a weight decay of 0.0005 and momentum
0.9, and 120 epochs. First, we applied our pre-processing to

generate the birds-eye-view and panaroma view from Velo-
dyne samples. Then, we subdivided the training set with
public available ground truth, but used ratios of 85% for
training and 15% for validation, because we trained from
scratch and aimed for a model that is capable of multi-class
predictions. The class distribution with more than 75% Car,
less than 4% Cyclist and less than 15% pedestrians. For
the first epochs, we started with a small learning rate to en-
sure convergence. After some epochs, we scaled the learn-
ing rate up and continued to gradually decrease it for up to
1,000 epochs

7.2. Evaluation on KITTI

We have adapted our experimental setup and follow the
official KITTI evaluation protocol, where the IoU thresh-
olds are 0.7 for class Car and 0.5 for class Pedestrian and
Cyclist. Detections that are not visible on the image plane
are filtered, because the ground truth is only available for
objects that also appear on the image plane of the camera
recording. Note, that we ignore a small number of objects
that are outside our birds-eye-view map boundaries with
more than 40m to the front, to keep the input dimensions
as small as possible for efficiency reasons.

Some of the results for birdeye view evaluation is given
in Fig 9. The network is able to yield good results on the
testing dataset and is able to predict most of the cars and
fewer of the pedestrian and cyclists. Additionally it can be
seen that the bounding boxes are not properly oriented in
some of the images.

Few results for panaroma view is given in Fig 10. Unlike
the bird eye view the panaroma view does not yield very
good results. The network is able to detect most of the cars
however the results for pedestrians and cyclists is lower. In
panaroma view we also observe that the bounding boxes are
not of the proper size as the object, unlike in the bird eye
view case where the bounding box sizes were fixated and
only the orientation varied.

7.3. Comparison of the two input methods

We compare the object detection performance of the dif-
ferent methods using Complex Yolo by using mAP. mAP
is the metric to measure the accuracy of object detectors
like Faster R-CNN, SSD, etc. It is the average of the max-
imum precisions at different recall values. For evalution
of which we used the Intersection over Union given in the
KITTI bechmark suite. IoU measures how much overlap
between 2 regions, This measures how good is our predic-
tion in the object detector with the ground truth (the real
object boundary).IoU is 0.7 for cars, 0.5 for pedestrians and
cyclists.

Other important observations to be made include the
cases when the IoU values match the threshold value how-
ever is an error. This is shown in fig 11. Observe how some-

5

Figure 9. Results on performing object detection on the KITTI dataset when the 3D point cloud data is converted to a 2D birds eye view
and fed as input to the Complex YOLO architecture. Some bounding boxes are not oriented properly over the cars

Figure 10. Results on performing object detection on the KITTI dataset when the 3D point cloud data is converted to a 2D panaroma view
and fed as input to the Complex YOLO architecture. Numerouisr cars, pedestrians are left undetected by the network

Method Car Pedestrian Cyclist
Birds eye view 61.21 25.92 34.84
Panaroma 40.5 - -

Table 1. Distributed Lighting Results on both real and simulated
datasets. We compare against two baseline methods, and show that
the distributed lighting based on joint optimization performs better
in all cases.

times the ground truth and predicted bounding box centres
are offset. However the IoU could match the threshold con-
dition. This is an important work that has to be addressed

Figure 11. Various bounding box errors

in future works.

7.4. Evaluation on 2D LIDAR

Results on evaluation on 2D LIDAR data is shown in
fig 12. The predicted box is shown on the left iamge
and ground truth is shown in the right image the Complex

6

Figure 12. Results on evaluation on 2D LIDAR data, the Complex
YOLO network performs very poorly when predicting objects, due
to the difference in sparsity between the data obtained from the
Velodyne data and RP LIDAR.

YOLO network performs very poorly when predicting ob-
jects, due to the difference in sparsity between the data ob-
tained from the Velodyne data and RP LIDAR. Also the
Sample points collecetd per second cary greatly between the
two methods. It is close to 2.2 million points for an Velo-
dyne HDL-64E and RP LIDAR collects around 500 points.
Moreover the range is 6m for RP LIDAR and 120m Velo-
dyne HDL64E.

8. Conclusion

In this paper we present the comparison on the object
detection performance of Yolov2 for point cloud data by
generating a single birds’ eye view and 2D point map of
point cloud data for KITTI dataset. This is feed as input
to the Complex YOLO network to perform object detec-
tion on evaluate which of the two inputs perform better also
we present the. This method does not need additional sen-
sors, e.g. camera, like most of the leading approaches since
this network makes use of the new E-RPN, an Euler regres-
sion approach for estimating orientations with the aid of the
complex numbers. The closed mathematical space without
singularities allows robust angle prediction. Our approach
is able to detect objects of multiple classes (e.g. cars, vans,
pedestrians, cyclists, trucks, tram, sitting pedestrians, misc)
simultaneously in one forward path. This novelty enables
deployment for real usage in self driving cars and clearly
differentiates to other models.On evaluation on 2D LIDAR
data the Complex YOLO network performs very poorly
when predicting objects, due to the difference in sparsity
between the data obtained from the Velodyne data and RP
LIDAR. In future work, it is planned to add height infor-
mation to the regression, enabling a real independent 3D
object detection in space, and to use tempo-spatial depen-
dencies within point cloud pre-processing for a better class
distinction and improved accuracy

9. Individual Contribution
Both the authors contributed equally to the work. Shen-

bagaraj led the work on the modified 2D LIDAR hardware
implementation and data collection. Sreenithy led the work
on object detection algorithm and data collection.

References
[1] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified

multi-scale deep convolutional neural network for fast ob-
ject detection. In European Conference on Computer Vision,
pages 354–370. Springer, 2016.

[2] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d
object detection network for autonomous driving. In IEEE
CVPR, volume 1, page 3, 2017.

[3] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner.
Vote3deep: Fast object detection in 3d point clouds using
efficient convolutional neural networks. In Robotics and Au-
tomation (ICRA), 2017 IEEE International Conference on,
pages 1355–1361. IEEE, 2017.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. International Journal of Robotics
Research (IJRR), 2013.

[5] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander.
Joint 3d proposal generation and object detection from view
aggregation. arXiv preprint arXiv:1712.02294, 2017.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21–37.
Springer, 2016.

[7] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frus-
tum pointnets for 3d object detection from rgb-d data. arXiv
preprint arXiv:1711.08488, 2017.

[8] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017.

[9] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.
arXiv preprint, 2017.

[10] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91–99, 2015.

[11] M. Simon, S. Milz, K. Amende, and H.-M. Gross. Complex-
yolo: Real-time 3d object detection on point clouds. arXiv
preprint arXiv:1803.06199, 2018.

[12] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. arXiv preprint
arXiv:1711.06396, 2017.

7

