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ABSTRACT 

       This project aims at implementing two image processing techniques, 

namely demosaicing and super-resolution. Most of the digital cameras capture 

only one of the three primary colour components – red, green or blue at each 

pixel point using colour filter arrays. Demosaicing algorithms focus on 

interpolating the missing colour components using the available pixel 

information. The proposed algorithm exploits the inherent relationships in the 

colour difference planes, i.e. red-green and blue-green planes. This method also 

takes edges into account using novel edge classification methods, thus giving a 

better output.  The result of the demosaicing process is a fully reconstructed 

RGB colour image obtained from the incomplete colour filter mosaic from an 

image sensor. 

       Super-resolution (SR) techniques are used to improve the resolution of 

images after they are captured by extracting relationships between high and low 

resolution images. This relation is obtained either from patches of different 

scales or by using a training set to build an operator through supervised 

learning. We propose to use a matrix based operator to reduce structural 

incongruities, which are otherwise prevalent in vector-based methods. The 

concept of a matrix based regression operator is extended to a low level feature 

SR algorithm. This approach achieves competitive performance efficiency and 

effectiveness which is checked by experimenting for various use cases. 
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CHAPTER 1 

INTRODUCTION 

 

       Image processing refers to the field of signal processing which works on 

visual or image data. It is a continually evolving field today with rapid 

developments. In the last five years, there has been a remarkable growth in the 

level of interest in image morphology, image enhancement, neural networks, 

full-colour image processing, image compression standards, facial recognition, 

and knowledge-based image analysis systems. Image processing methods are 

motivated from two major applications: improvement of image-level 

information for human interpretation, and processing of pictorial data for 

machine perception. Humans have the ability to perceive information as an 

image better than any other form. Eye-sight and vision allows humans to 

observe and understand the surroundings. Image analysis and computer vision 

aim to duplicate the effect of human vision by electronically perceiving and 

understanding images. 

       A major part in dynamic advancement in this field is credited to digital 

systems.  Modern-day digital technology has made it possible to manipulate 

multi-dimensional signals for use in image systems. The first step in the process 

is image acquisition and requires an imaging sensor as well as the capability to 

interpret the signal captured by the sensor. If the output of the sensor is not 

already in digital form, an analog to digital converter is additionally used. 

       After a digital image is obtained, the next step is to perform pre-processing. 

The key function of pre-processing is to improve the image for use in other 

applications. It deals with methods to enhance contrast, remove noise, and 

isolate regions with specific textures. The next stage deals with segmentation 

which partitions an input image into its constituent parts or objects. Weak or 
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erratic segmentation algorithms almost always guarantee eventual failure, in 

terms of character recognition, wherein the key role of segmentation is to 

extract individual characters and words from the background. 

 

1.1   IMAGE ACQUISITION IN DIGITAL CAMERAS 

       In most digital cameras, a Colour Filter Array (CFA) is placed on top of the 

monochrome image sensor to acquire the low-resolution colour information of 

the image scene. Each sensor cell has its own spectrally selective filter (R,G, or 

B) and thus, the acquired CFA data constitutes a mosaic-like monochrome 

image. The type of CFA determines the arrangement of recorded colour 

components and the most widely used CFA pattern is the Bayer pattern. This 

widely adopted solution keeps cost and size of digital cameras under control, 

because the image sensor is the most expensive component of the camera. If we 

want to capture a colour image, we must capture or reconstruct the data 

corresponding to the other two colour-channels of the image. 

 

Fig 1.1: Type of colour filter array (CFA) patterns  

 

1.2   BAYER CFA PATTERN 

       The Bayer CFA uses the three additive primary colours as the filter sensors 

to achieve and reconstruct red, blue and green data of a scene. In a Bayer Filter, 

for each 2×2 set of pixels, two diagonally opposed pixels have green filters, and 

the other two have red and blue filters. Because the spectral response of a green 

(G) channel corresponds to that of the human visual system’s luminance 
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channel, the green components are sampled at twice the rate of the red (R) or 

blue (B) components. This technique is used in most digital cameras. Figure 1.2 

shows the Bayer filter and arrangement of R, G and B sensors, the image is 

taken from Ye and Ma  (2015).  

 

Fig 1.2: Bayer filter and arrangement of R, G and B sensors 

 

1.3   COLOUR IMAGE RECONSTRUCTION 

       Demosaicing is the process that estimates the two missing colour 

components at each pixel location to restore a full-colour image from the 

mosaiced image. The most popular principle in the demosaicing literature is the 

green plane-first rule. The key motivation behind this principle is that the green 

component is less aliased than the other two. Thus, having a full-resolution 

green plane could facilitate the recovery of blue and red planes. If the 

demosaicing process is not properly carried out, severe colour artifacts will be 

incurred on the restored full-colour image. In demosaicing, it is commonly 

assumed that colour ratios and colour differences are constant over small 

regions. These are referred to as the colour ratio model and colour difference 

models, respectively. Interpolation along an object boundary is always 

preferable to interpolation across it because the discontinuity of the signal at the 

boundary contains high-frequency components that are difficult to estimate. 

Visually, two types of artifacts are generated in the demosaiced image: one is 

the pattern of alternating colours along the edge, called zipper effect, and the 

other is the noticeable colour errors called false colour. 

       Many methods have been proposed for interpolating the missing colour 

components in mosaiced image. Because of its simplicity and effectiveness, 



4 
 

many methods utilize the colour difference model, i.e., red-green and blue-

green. In both cases, correct interpolation of the missing green components is 

crucial because interpolated green components are used to reconstruct the other 

colours. Improper interpolation of neighboring pixel values leads to 

demosaicing artifacts, such as false colours and the so called zipper effect. 

       One strategy for interpolation of neighboring pixels is the edge-directed 

method. In this method, two or more predictors are estimated along the 

candidate directions, and one of them is selected as the value of the missing 

pixel. The objective of this strategy is to perform interpolation along edges 

rather than across them. Another strategy is computing a weighted sum of 

predictors. After estimating predictors along the candidate directions, some 

weights are calculated on the basis of the edge directions. Each missing pixel is 

then interpolated by the weighted sum of predictors with the calculated weights. 

       Other strategies use various schemes such as pattern matching, median 

filtering, bilateral filtering, and optimization-based filtering. Demosaicing has 

been studied in the frequency domain as well. One promising class of 

algorithms is based on a frequency-domain explanation of the spatial 

multiplexing of red, green and blue components; it has been termed 

lumachroma de-multiplexing. 

 

1.4   IMAGE RESOLUTION 

       Image resolution is the detail an image holds. Resolution quantifies 

how close lines can be to each other and still be visibly resolved. It is defined 

for all types of images: raster digital image, analog image captured by film 

camera and synthetic images. It is also the capability of the sensor to observe or 

measure the smallest object clearly with distinct boundaries. There is a 

difference between the resolution and a pixel. A pixel is actually a unit of the 

digital Resolution depends upon the size of the pixel. 
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Usually, with any given lens setting, the smaller the size of the pixel, the 

higher the resolution will be and the clearer the object in the image will be. 

Images having smaller pixel sizes might consist of more pixels. The number of 

pixels correlates to the amount of information within the image. Thus, an image 

that holds more detail is said to be of higher resolution than a corresponding one 

with less detail. Higher resolution images convey more complex structured data.  

 

1.5   NEED FOR RESOLUTION ENHANCEMENT 

       When magnified, the surface of a CCD looks like a large, dot-filled grid. 

Each of these dots is a light receptor, called a photodiode.  One dot equals one 

pixel, which is the smallest unit of an image. While the resolution of a film 

camera depends on the quality of the lens, the resolution of a digital camera 

depends on the number of pixels in the CCD. This is because a digital camera's 

CCD records an image using a fixed grid pattern. A higher spatial resolution 

may be attained by the image capturing system with a larger density of sensors. 

An imaging system with insufficient detectors will generate low resolution 

images with artifacts like blocky effects, ringing, checkerboard effect, etc. due 

to the aliasing from low spatial sampling frequency. 

 

    

       (a)            (b)   

Fig 1.3: An image scene captured with (a) small number of CCD sensors and 

(b) large number of CCD sensors 



6 
 

       In digital image processing applications, images with high spatial resolution 

are desired for subsequent processing and analysis. As the resolution increases, 

the image becomes clearer. It becomes sharper, more defined, and more detailed 

as well. This is because there’s more information in the same small space. 

Generally, the resolution of images obtained depends on the hardware 

employed. These days, images of high resolution are available by using modern 

high quality image sensing technologies such as high precision optics and 

charge-coupled devices (CCDs), but they are expensive. 

       This has led to the idea of resolution enhancing algorithms for obtaining 

higher resolution images in various applications. Normal camera sensors with 

low image resolution capability are used as such, but the resolution is improved 

using image processing techniques. This cuts down on the hardware and 

equipment expenses, since only software processing has to be done on the 

captured images. Therefore, resolution up-gradation techniques can improve the 

clarity of these images and help to solve the shortcomings of hardware 

improvisation. 

 

1.6   SUPER-RESOLUTION 

       A class of techniques known as super-resolution algorithms has been 

developed to obtain high-resolution images from a collection of low resolution 

photographic images. Super-resolution (SR) algorithms are techniques that 

increase the high frequency components, replicating higher dimensional 

manifolds and removing the degradations caused by the imaging process of the 

low-resolution camera.  These methods put together a collection of low-

resolution images containing aliasing artifacts to restore a high-resolution 

image.  

The general approach requires the re-sampling of a high resolution image 

of the training database to construct the low resolution image. The goal is then 
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to recover the high resolution image based on the input images and the imaging 

model that produces the low resolution observed images. Thus the accuracy of 

imaging model is vital for super-resolution. Incorrect modeling may result in 

further degradation of the image. The relative association between the high 

resolution and constructed low resolution images must then be learned. This 

represents the global correspondence between them, and the super-resolution 

procedure can then be applied to any test image of interest. In Figure 1.4, the 

image to the left is of lower spatial resolution and the image to the right is of 

higher spatial resolution obtained from the former image using SR techniques. 

 

Figure 1.4: Super-resolution example 

 

1.7   EXISTING SR ALGORITHMS  

Super-resolution algorithms are classified based on the approach used to model 

the LR images. The two main categories are multi-frame and single frame 

super-resolution. Multi-frame image super-resolution (SR) aims to utilize 

information from a set of low-resolution (LR) images of the same scene to 

compose a high-resolution (HR) one. Image registration which is most 

important part of multi-frame super-resolution requires accurate alignment 

using the registration parameter. These images are then fused, which is the 

process of combing information of interest in two or more LR images into a 

single high-resolution image. Single-frame super-resolution generate high 
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resolution image from single degraded image or low resolution image. In single 

frame SR technique, the missing high frequency information in the LR image is 

estimated from large number of training set images and added to the LR image. 

This category of SR algorithms is also called as learning based super-resolution 

techniques as the LR-HR relation is learnt from a training database. On the 

other hand, single image super-resolution techniques use various levels of scale 

(size of the image) at different resolutions to extract fundamental characteristics 

between regions of low and high resolution. Single image super-resolution 

techniques are becoming more popular nowadays due to their simplicity and 

also there is no need for using a large training set to learn image pair 

relationship. 

The organization of the thesis is presented in next section. 

 

1.8   ORGANISATION OF THESIS 

The rest of the thesis is arranged as follows: 

Chapter 2 provides a literature overview of the various papers analyzed for this 

project, 

Chapter 3 provides an introduction to traditional dictionary based algorithms 

and sparse representation, 

Chapter 4 follows up with matrix valued regression and is extended to feature 

based regression analysis. The image pair operator and its properties are 

described. This chapter also explains in detail the training and testing phase of 

the algorithm,  

Chapter 5 talks about the implementation of the above elucidated demosaicing 

and super-resolution algorithm in different applications, 

And finally, Chapter 6 provides the future work in the domain and conclusion 

statements. 
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CHAPTER 2 

LITERATURE SURVEY 

 

       There have been several outcomes of previous work in the field of super-

resolution, each work proposing a novel methodology that has its own successes 

and limitations. Subsets of these papers which pertain to our field of research 

have been referred to as part of the project. The major paradigms of 

demosaicing algorithms include spatial domain methods or frequency domain 

methods. The paradigms of SR algorithms are: pixel interpolation-based 

algorithms, edge-based algorithms and regression based-algorithms. Very few 

works have been done regarding integrating both demosaicing and super-

resolution. 

       In one of the seminal papers on demosaicing by Lukac et al. (2004) 

presented a normalized colour-ratio model for colour tiller array (CFA) 

interpolation schemes. The proposed normalized model enforces the underlying 

modelling assumption in both smooth and high frequency image regions. Using 

the proposed model, which represents a generalization of the conventional 

colour- ratio model, significantly boosts the performance of most well-known 

CFA interpolators, in both objective and subjective image quality measures. 

      Wang et al. (2012) has presented an adaptive demosaicing algorithm by 

exploiting both the non-local similarity and your regional correlation in along 

with filter array image. First, just about the flattest nonlocal image patches are 

searched within the searching window devoted to the estimated pixel. Second, 

the plot, which can be regarded the absolute most just like the current plot, is 

selected among the absolute easiest nonlocal patches. Third, in line with the 

similar degree and your regional correlation degree, the obtained nonlocal 
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image patches together with the current patch are adaptively chosen to estimate 

the missing colour sample. 

       Fang et al. (2012) has proposed an easy frequency domain analysis 

approach for joint demosaicing and sub pixel based down-sampling of single 

sensor Bayer images. From this, they integrated demosaicing into down-

sampling by directly performing sub-pixel based down-sampling within the 

Bayer domain, which means that the computational complexity is reduced. 

       Ling Shao et al. (2014) proposed a content adaptive demosaicing strategy 

utilizing structure analysis and correlation involving the red, green and blue 

planes. Those two aspects were chosen in the classification associated with a 

block of pixels to produced trained filters. The planned technique aims to 

reconstruct a first class demosaiced image originating from a Bayer pattern in 

any colour filter array efficiently. Experimental results showed that the 

proposed strategy performs comparatively as higher end methods. 

       The work of Wu et.al (2016) titled “Bayer Demosaicing With Polynomial 

Interpolation”, introduced a polynomial interpolation-based demosaicing. This 

method makes three contributions: calculation of error predictors, edge 

classification based on colour differences, and a refinement stage using a 

weighted sum strategy. The predictors are generated based on the polynomial 

interpolation, and combined per an edge classifier. After populating three colour 

channels, a refinement stage is applied to enhance the image quality and reduce 

demosaicing artifacts. 

       Glasner et al. (2009) propose a unified framework for the classical multi-

image super-resolution and example-based super-resolution. The proposed 

method further aims to recover new missing high-resolution details that are not 

explicitly found in any individual low-resolution image. It shows how this 

combined approach can be applied to obtain super-resolution from as little as a 

single image (with no database or prior examples). As shown in Figure 2.1, their 
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approach is based on the observation that patches in a natural image tend to 

redundantly recur many times inside the image, both within the same scale, as 

well as across different scales. Recurrence of patches within the same image 

scale (at sub-pixel misalignments) gives rise to the classical super-resolution, 

whereas recurrence of patches across different scales of the same image gives 

rise to example-based super-resolution. Their approach attempts to recover at 

each pixel its best possible resolution increase based on its patch redundancy 

within and across scales. 

 

Figure 2.1:  Recurrence of patches within and across scales of a single image. 

       Tang et al. (2013) suggested a regression approach on matrix scales for 

image SR. Single-image super-resolution is firstly treated as a problem of 

matrix-value regression. By using matrix-value regression techniques, some 

desired properties are found. Firstly, the matrix value regression technique 

greatly promotes the efficiency of learning from image pairs. As a result, the 

matrix-value regression based super-resolution algorithm can be smoothly 

applied to big data setting. Secondly, the matrix-value regression technique 
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makes it possible to design a patch-to-patch super-resolution algorithm. It is the 

first patch-to-patch algorithm in the field of single-image super-resolution. 

       Tang et al. (2015) have successively proposed an image pair analysis 

technique that provides significant image pair priori describing the dependency 

between training image pairs for various learning-based image processing. For 

avoiding the information loss caused by vectorising training images, a novel 

matrix-valued operator learning method is proposed for image pair analysis. 

Sample-dependent operators, named image pair operators (IPOs) by them, are 

employed to represent the local image-to-image dependency defined by each of 

the training image pairs. A linear combination of IPOs is learned via operator 

regression for representing the global dependency between input and output 

images defined by all of the training image pairs. The proposed operator 

learning method enjoys the image-level information of training image pairs 

because IPOs enable training images to be used without vectorising during the 

learning and testing process. The computational and memory complexities of 

the proposed algorithm heavily reduced.  

       Milanfar et al. (2005) have proposed a fast and robust method for joint 

multi-frame demosaicing and colour super-resolution. They have considered 

these problems in a joint setting because both refer to resolution limitations at 

the camera. They gave a multi-frame demosaicing technique based on a 

maximum a posteriori estimation technique by minimizing a multi-term cost 

function. The L1 norm is used for measuring the difference between the 

projected estimate of the high-resolution image and each low resolution image, 

removing outliers in the data and errors due to possibly inaccurate motion 

estimation. Bilateral regularization is used for spatially regularizing the 

luminance component, resulting in sharp edges and forcing interpolation along 

the edges and not across them. 
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        Theodor Heinze et.al (2012) proposed an artificial neural network (ANN) 

based framework for joint demosaicing and super-resolution of colour filter 

array (CFA) raw image sequences. This is based on the idea that image 

processing steps are special cases of neural network processing and can be 

integrated into one single processing step. The proposed algorithm is self-

adaptive to the number of frames; however it is too slow for real-time video 

data processing. 
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CHAPTER 3 

DEMOSAICING ALGORITHM BASED ON EDGE INFORMATION 

 

       The reconstruction of full colour images from a CFA based detector 

necessitates a process of manipulating the values of any other colour separations 

at each pixel. The methods of these types are commonly referred as colour 

interpolation. The image below shown in Figure 3.1 shows the output from the 

Bayer layer image sensor each pixel has only Red, Green or Blue components.  

 

Fig 3.1: Bayer Filter Sample 

       Image reconstruction based on CFA may introduce colour artifacts and blur 

the image edge. Interpolation algorithm is simple without considering the edge 

information in image reconstruction process but the image reconstructed may be 

blurring and has low quality. So a digital camera is means to reconstruct a 

whole RGB image using all above information. The resulting image is like the 

shown image given in Figure 3.2. 

 

Fig 3.2: Reconstructed Image 
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       This reconstructed image will be accurate in uniform coloured areas but it 

has a loss of resolution and has edge artifacts. A reconstructed image from a 

CCD with a Bayer pattern CFA measures only 33% information of the original 

image. Two common types of artifacts are Zippering and False colouring. 

1. Zippering or Blurring Artifacts 

Zippering and blurring effect is that when there is a one-side effect of 

CFA demosaicing, which occurs generally along edges. Therefore, edge 

blurring occurs along the edges in an on/off pattern. 

2. False Colour Artifacts  

A regular artifact of CFA demosaicing is false colouring. It is that artifact 

which manifests along edges wherever quick or unpleasant adjustments in 

colour arise, as a result of mis-interpolation crosswise, rather than along 

the length of an edge. 

       Thus, it is important that a demosaicing algorithm must be chosen taking 

into consideration all these factors. Since the number of green pixel sensors is 

double the blue and red, reconstructing intensity image in green channel with 

full-resolution facilitates the unknown colour reconstruction of the scene, such 

as blue channel and red channel. There is a need for taking interpolation 

direction into consideration in order to ensure that interpolation is carried out 

effectively. Among Bayer mode, the Bayer method outputs the green square 

shaped grid and the rectangular grid on the blue and red array. Green channel 

contains more colour sensor data, so the first to carry out the interpolation of 

green components. 

Abbreviations and Notations used in the proposed method are as follows 

g(i,j) - Interpolated green component at pixel location (i,j) 

b(i,j) - Interpolated blue component at pixel location (i,j) 

r(i,j) - Interpolated red component at pixel location (i,j) 
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G(i,j)- Green Bayer component at pixel location (i,j) 

R(i,j)- Red Bayer component at pixel location (i,j) 

B(i,j)- Blue Bayer component at pixel location (i,j) 

Lh - Horizontal gradient at pixel position (i,j) 

Lv - Vertical gradient at pixel position (i,j) 

 

The three steps used in this reconstruction are as given below: 

(i) New calculation of gradients 

(ii) Edge classification based on colour differences and gradient directions 

(iii) Refinement stage using a weighted sum strategy for artifacts reduction 

 

3.1 CALCULATING EDGE INFORMATION 

The missing g i,j is calculated from the image filtered in both vertical direction 

and horizontal direction, and the optimally fusion can be done based on the two 

direction’s estimations. Then the green intensity reconstruction full resolution 

image can be used to guide the interpolating of the unknown ri,j and unknown 

bi,j. Lh and Lv can be used to determine how to interpolate the colour 

information of three different channels based on the interdependency of an 

image. Lh and Lv which indicate two different gradients of image information 

separately at pixel position (i, j) can be calculated by the below given formulas 

3.1 and 3.2.  

By comparing Lh and Lv, it can be estimated if there is a greater gradient 

changing or not at pixel (i,j) in the image. If Lh >Lv , then there are more great 

gray changing between the left parts and the right parts than between the above 

parts and the below parts at the pixel (i,j), so the unknown colour intensity at 

pixel (i,j) can be calculated by using the known colour information of its above 

parts and its below parts at the pixel (i,j). If Lv>Lh, then there are more great 
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gray changing between the above parts and the below parts than the left parts 

and the right parts at the pixel( i,j ), so the unknown colour intensity at pixel (i,j) 

can be calculated by using the known colour information of the left and right 

parts to the pixel ( i,j ). 

 

                         

      

                              

                       

      

                               

 

 

(3.1) 

                         

      

                              

                          

      

                               

        (3.2) 

 

 

3.2 INTERPOLATING UNKNOWN GREEN INTENSITY  

        In order to achieve high quality image for HVS, the local edge information 

is used in the interpolating missing green component’s procedure.   

If Lh>2.Lv or Lv>2.Lh at pixel position (i,j), then there is a significantly 

gradient changing in image obviously, otherwise, there is a small gradient 

changing in image or there is a smooth local region in image. Here, according to 

different cases of the variable, g i,j  can be interpolated by the following formula: 
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Fig.3.3: Bayer CFA Pattern with different center pixels 

 

3.3 INTERPOLATING OTHER COLOUR PIXELS 

 

3.3.1 Interpolating unknown red intensity at green pixel  

       Now using the interpolated green components from the previous step, the 

red and green intensities are estimated. The Figure 3.3 shows the Bayer CFA 

Pattern with different center pixels and taken from Wang(2012). The 

corresponding missing red sample, ri,j at a green pixel position in a RGRGRG  

as shown in Figure 3.3.(c) line is given by the formula below: 

(3.3) 
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 (3.4) 

The corresponding missing red sample, ri,j at a green pixel position in a GBGBG 

line as shown in figure 3.3.(d) is given by the formula below: 

 
          

                           

 
 (3.5) 

 

     3.3.2 Interpolating unknown blue intensity at green pixel 

The unknown blue intensity bi,j  in a RGRG and GBGB can be interpolated by 

the formulas given below: 

 
          

                           

 
 

 

(3.6) 

 
          

                           

 
 (3.7) 

 

3.3.3 Interpolating unknown blue intensity at red pixel  

The unknown blue intensity bi,j can be interpolated as below: 

 
            

 

 
                   

        

 (3.8) 

 

       3.3.4 Interpolating unknown red intensity at blue pixel  

The unknown red intensity ri,j can be interpolated as below: 

 
            

 

 
                   

        

 

 

 

(3.9) 
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CHAPTER 4 

LEARNING BASED SUPER-RESOLUTION 

 

        Various image super-resolution algorithms have been recommended with 

different assumptions and evaluation criteria based on the application. Super-

resolution algorithms can be roughly classified into three groups. The first 

group generates HR images from LR inputs through a predefined mathematical 

formula without any training. The algorithms in this category include 

interpolation-based methods such as bilinear and bi-cubic, which generate HR 

pixel intensities by using weighted average of neighboring LR pixel values. But, 

interpolation-based methods tend to generate intensities that are locally similar 

to neighboring pixels and generate very smooth regions. The second group is 

the edge based methods in which priors are learned from edge features. Various 

edge features have been used such as the depth and width of an edge or the 

parameter of a gradient profile. Edge based methods have the advantage of 

sharpness and limited artifacts but is less effective for modeling high frequency 

structures like textures. 

       The third group is the learning based approach that uses a patch or feature-

based method to learn the relationship between local image detail in low 

resolution and high resolution versions of the same scene. This learned 

knowledge is then incorporated into the priori term for reconstruction. The 

training database of learning based SR algorithms needs to have a proper 

generalization capability. Using a larger database does not necessarily generate 

better results, on the contrary, a larger number of irrelevant examples not only 

increase the computational time of searching, but it also disturbs the search. 

Some methods of learning the mapping functions are weighted average, sparse 

dictionary representation, kernel regression, etc. 
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4.1   REGRESSION BASED SR ALGORITHMS 

        Regression analysis is one of the most common methods among learning 

based super-resolution techniques. It is the process of estimating the 

relationship existing between variables. It formulates a correspondence between 

the dependant and the independent variable. With regression analysis, we get to 

know how the criterion or the dependant variable changes in accordance with 

one or more predictors, which are the independent variables. Applying this 

methodology to the case of super-resolution, it targets at establishing a universal 

relationship between low resolution and high resolution image pairs in the 

training set. This relation is obtained in the form of a function or an operator. It 

represents the global correspondence between the LR-HR image pairs and can 

be used on any LR image to improve its resolution. Some familiar methods of 

regression analysis are linear regression and nonlinear regression. In both these 

approaches, a least mean square error condition may be considered as a 

constraint to establish the best approximation. The data is fitted by a method of 

successive approximations where the sum of squares must be minimized by an 

iterative procedure. 

        Linear regression is an approach for characterizing the relationship 

between a scalar dependant variable y and one or more independent variables 

denoted X. Regression is done by fitting a predictive model to an observed data 

set of y and X values. The method is called a simple linear regression if there is 

only one independent variable involved. When more than one independent 

variable exists, the method is called multiple linear regression. The relationships 

are modeled using linear predictors whose unknown model parameters 

are estimated from the data. Commonly, line fitting and curve fitting techniques 

are used for this purpose. Nonlinear regression is a form of analysis in which 

data is modeled by a function which is a nonlinear combination of the model 

parameters and depends on one or more independent variables. 
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        Regression models in SR, train the function or the operator to map the LR-

HR relationship. This mapping can be either linear or non-linear. For ease of 

computation, linear operators are preferred whereas non-linear operators 

provide the advantage of minimal errors. This operator can later be used on low 

resolution test images to perform super-resolution. Thus, all regression based 

methods have a specific training phase and a testing phase. 

 

4.2   IMAGE PATCH VECTORISATION 

        In usual regression based SR algorithms, the image pairs are converted into 

vectors during both the training and the testing phases. Image vectorisation is 

the process of converting images into a vector graphic. Computers understand 

images only as arrays of pixel values, limiting the operations that can be done to 

manipulate the pixels. Thus vectorisation transforms the problem of learning 

image-to-image dependency into the problem of learning vector-to-vector 

dependency. The vectorisation of images however suffers a drawback when it 

leads to the loss of image level information due to structural incongruity. In 

complex images where structural similarity is crucial, vector based priors prove 

to be inefficient. This can be overcome by avoiding the vectorisation of images 

and directly representing them as matrices. 

 

4.3   MATRIX VALUE REGRESSION ANALYSIS 

       Successful image-pair analysis is the key point in performing learning 

based super-resolution algorithms. The image-pair regression operator defines 

the relation between training patch-pairs and should be effective enough to be 

applied as a global priori. Thus, the learning or training phase determines the 

preciseness of the operator and the quality of super-resolution output. As said 

earlier, vectorisation of images leads to the loss of image level image 

information and structural similarity. The matrix value regression technique 
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greatly promotes the efficiency of learning from image pairs and makes it 

possible to design a patch-to-patch super-resolution algorithm. Matrix based 

regression is also advantageous when compared to vector based methods since 

higher order differentiable components are more easily represented and 

identifiable in the matrix form rather than the vector form. 

 

4.4   IMAGE PAIR OPERATOR 

 

 

Figure 4.1: Image priori and pair-priori 

       Image patch-pair analysis is a method to learn the priori defined by a set of 

training image pairs. Image priors developed for specific tasks supply well 

targeted information. Training this image pair-priori by regression methods 

yields an operator that models the global image to image relationship. Thus, 

image pair analysis is a promising supervised learning technique to gain more 

information beyond the image priori for image processing. In figure 4.1, it could 

be found in the example that image pair priori makes the relation between 
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known training image pair preserved by the image pair of the observation and 

its estimation. Image pair analysis offers more chance to enhance the 

performance of learning-based image processing, such as offering larger 

magnification factor. 

       It is seen that image priori provides details specific to its own self and is not 

a global solution. Thus it does not provide targeted information to the algorithm. 

Alternatively, image pair-priori defines a mapping between the pair of images, 

and that is used to train the operator. Well learned pair priori provides more 

information than a normal priori, when used separately. 

       Tang et.al (2015) in the paper ‘Image Pair Analysis With Matrix-Value 

Operator’ defines an image pair operator (IPO) to represent the local 

dependency of image pairs using matrix-value operator. The performance of this 

IPO is based on the type of training set used. Thus, by adopting a simple 

constraint of least root mean square error based linear regression, the matrix 

value operator (MVO) can be well designed. 

       An image patch-pair denoted as   = ( ,  ) ∈      defines a linear image 

pair operator (IPO) M ∈     . Mathematically, it is a natural choice to explicitly 

represent the local dependency of the image pairs via the matrix-valued 

operator. Each image pair         potentially defines an operator   which 

satisfies, 

                                                         (4.1) 

Restricting   to be a linear operator, it becomes  

                                                       (4.2) 

where the linear operator   is represented by a matrix with the size        , and 

‘   ’ represents the matrix multiplication. For simplicity, the matrix 

multiplication sign ‘   ’ has be omitted in further use. 
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       Assume that the image patch   is a full rank matrix. It is clear that a data-

dependent linear operator M can be deduced from (4.2), 

                                                       (4.3) 

where     means the inverse matrix of  . The data-dependent linear operator 

exactly models the dependency defined by the image pair         because it 

follows from (4.3) that 

                                                  (4.4) 

Thus, the local dependency of image pair can be equivalent to a data-dependent 

linear operator in some sense. Based on the above observations, an IPO is 

defined as follows: 

 

Definition 1: For an image pair        , the IPO connected with the image 

pair is  

                                                    (4.5) 

where    is the Moore–Penrose inverse of the matrix x. 

 The IPO operator M greatly depends on the full rank condition of its 

image patch-pairs to formulate the matrix inverse. For rank deficient matrices, 

computation of inverse is not stable. Generally in matrix-based image pair 

analysis methods the patch-pairs are assumed to be full rank matrices.  

 However, this places a huge constraint on the type of input images used. 

Also images with more smooth textures will intuitively have more rank 

deficient patches. Thus image patches extracted from natural images are 

intuitively rank deficient. To accommodate rank deficient patch-pairs to 

represent the image-pair priori, matrix inverse is computed by factoring the 

patch-pairs with singular value decomposition (SVD). 
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4.5  COMPUTATIONAL COMPLEXITY 

      The advantage of IPOs is that they employ 2-D similarity to represent the 

difference between training and test image patches. Therefore from (4.4), we get 

                                          (4.6) 

where,            is a test image pair. The term        records the difference 

between training image patch x and test image patch    in 2-D style. From (4.6), 

the HR estimation   of the LR test image   can be found effectively using the 

MVR operator. A 2-D similarity measure will offer more information on the 

structure difference between two image patches. 

       The IPO operator significantly reduces the computational complexity by 

reducing the number of variables required to represent the operator. As the 

image patch-pairs are matrices of size      , the image-pair regression 

operator will be a matrix of size      . Therefore, it is required to have    

variables to represent the matrix-based regression operator. Nevertheless, in 

vector based approaches, as image patches are column vector of size       , 

the regression operator that maps the two vectors should be a matrix of size 

         requiring    variables. 

 

4.6  MATRIX VALUED OPERATOR 

4.6.1 TRAINING PHASE 

 In this step, the relationship between some HR examples from a specific 

class like face images, finger-prints, etc. and their LR counterparts are learned. 

The training samples are used to learn an optimum matrix value regression 

operator. It is a learned image-pair priori which links the low-resolution and 

high-resolution patches. A few high quality images    
 ∈       are first 

collected, captured by the high-resolution imaging device, and are considered as 
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high-resolution examples. These high-resolution example images are then 

down-scaled by a scale factor  .  These down-scaled images form the 

corresponding low-resolution image set    
 ∈  

 

 
 

 

  . To avoid mismatch in 

matrix dimensions, the LR images are up-scaled to the size of the HR example 

images using an interpolation operator     
 

 
 

 

       and is denoted 

by    
 ∈      .  

      Thus, the set of images in       
    

   denote the training image pairs. Let 

  and   respectively denote image patches of size       extracted from    

and    respectively. We learn that for each image patch   obtained from the 

image    centered at its origin      , a self-similar example patch   around its 

origin         exists in the LR image    , where              , and 

             . Here, s is the above mentioned scale factor. This 

correspondence between   and   is learned by the matrix-value operator. 

 Let the training patch-pair set be denoted as              
  ∈     , 

where         is the low-and high-resolution patch-pairs and   denotes the 

number of training patch-pairs. The matrix-value operator mapping the low-

resolution image space to the high-resolution image space is then defined 

as      . It represents the image level relation between the LR and HR 

training patches in the training sequence   . The optimal matrix-value operator 

   is subsequently learned from the training set    using the least square 

regression model, 

                   
 
   

 
                                       (4.7) 

where      is the Frobenius norm. This least square regression model can be 

thought of as in the Hilbert-Schmidt and the optimal matrix-value operator is 

given by; 

                   
 
   

 
                                         (4.8) 
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 Denote                          
   

          
                        

                             
         

            
      

Therefore, Eq. (4.8) becomes 

         
 

   

 

   

    

Thus the optimal target function is given by                                                                                                   

        

 

   

    

        
         

            
      

 

   

 

        
 

 

   
         

 
 

   
            

 
 

   
      

                                                      (4.9) 

where    =      
  

   ,   =      
  

   and         
  

    

The optimal matrix-value operator    should satisfy the local minima 

condition. Therefore,         

 

  
       

 

   
                     = 0                         (4.10) 

Therefore the optimal Matrix-value operator is given by 

        
                                                 (4.11) 

As previously stated, due to the rank deficiency obstacle, we compute the 

inverse of the auxiliary matrix    by factorizing it with singular value 
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decomposition, thus        , where   and   are orthogonal matrices and   

is a diagonal matrix with singular values.   

                                                         (4.12) 

 The optimal matrix-value operator    shown in Eq. 4.12 explicitly 

represents the image-level correspondence between the low and high-resolution 

image patch-pairs. The matrix-value operator resulting from the training phase 

is expected to better reconstruct the fine details from the low-resolution images.  

 The procedure to obtain optimal MVR is summarized in Algorithm 1.  

Figure 4.2 provides an overview of the proposed algorithm. 

 

 

Figure 4.2: Proposed matrix based SR methodology 
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4.6.2 RECONSTRUCTION PHASE 

        This phase makes use of the matrix-value regression operator learned from 

the previous step to super-resolve a low-resolution image. The test image     is 

interpolated by a factor  . Non-overlapping image patches of size        are 

extracted from the interpolated test image. This collection of low-resolution 

patches is represented as        
  

   

 
.  Every test image patch in the set    is 

super-resolved using the matrix value regression operator: 

                                                                (4.13) 

The super-resolved test image patches are merged together to form the super-

resolved high-resolution image    . The steps involved in the reconstruction 

phase are summarized in Algorithm 2. 

Algorithm 1 Training phase 

                         
 

 

   
  

                        
 

 

   
 

                        

                  
         

 

                              

Input : Training image patch-pairs              
  ∈     , 

Output: Optimal Matrix-value operator    

Steps: 

1. Calculate the auxiliary matrices    and    

2. Factorize the auxiliary matrix    using SVD 

3. Find the inverse of auxiliary matrix    

4. Find the optimal Matrix-value operator 

7. Result: Optimal Matrix-value operator,    
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Algorithm 2 Reconstruction phase 

Input : Optimal Matrix-value operator   , low-resolution test image     

Output: Super-resolved HR image       

Steps: 

1. Construct non-overlapping patches of size     from test image 

           
  

   

 
 

2. For every test image patch    
  , find the super-resolved patch  

          

3. Merge the super-resolved patches          
  

             
  

Result: Super-resolved HR image,       
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

       Image enhancement techniques are gaining importance nowadays due to the 

wide variety of applications which make use of image samples to process 

information related to their application. Image enhancement techniques used in 

many areas such as forensics, astro-photography, fingerprint matching, etc. It 

includes contrast enhancement, edge sharpening, blur reduction, removing noise 

are just some of the techniques used to make the images bright. Images obtained 

from fingerprint recognition, safety measures videos analysis and indulgence 

scene investigations are enhanced to help in identification of culprits and 

protection of victims. In this project demosaicing followed by super-resolution 

is applied to standard test images. The training of the data for super-resolution is 

also done using standard test images due to similarity in terms of presence of 

objects of interest present in the image. 

       Many works till now have separately focused on either of these techniques. 

The combined framework of the proposed method is studied using qualitative 

and quantitative measurements. The performance of the proposed method is 

evaluated and compared with some reference benchmarks. In the experiments 

the McM dataset was used. The McM dataset has been used in many recent 

survey papers. The McM dataset consists of 18 full colour images with a pixel 

resolution 500 × 500; however for experimental purpose we have used only 5 

images.  

 

 



33 
 

   

      (a)              (b) 

   

      (c)              (d) 

 

(e) 

Fig 5.1. Images #1, #5, #11, #17, #18  from the McM dataset correspond to (a) 

through (e) respectively 
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5.1 EVALUATION PARAMETERS 

       The performance is examined by the experimental results obtained by the 

proposed algorithm, both for demosaicing as well as super-resolution. The 

effectiveness of the proposed algorithm is a measure of visual experience 

obtained from the reconstructed image. The reconstructed image is evaluated 

both qualitatively and quantitatively to assess its effectiveness. 

 

5.1.1 Qualitative Evaluation  

       Qualitative evaluation depends on a few attributes of the reconstructed 

image. The image is visually inspected for its naturalness and sharpness to 

assess the quality of the reconstructed image. The sharpness of an image is 

assessed based on the high-frequency details present in it. It is desired that the 

algorithm should not introduce any counterfeit HF details. Similarly, image 

naturalness is attributed to the distortions and artifacts present in the image. If 

the fine-details in the image are not preserved, it will introduce jaggy and 

ringing and staircase artifacts. These artifacts will severely affect the quality of 

the image. These attributes in the images can be evaluated by visual comparison 

of the images.   

 

5.1.2 Quantitative Evaluation 

       For quantitatively evaluating the objective performance of the demosaicing 

process, the difference incurred between the original and the demosaiced images 

are measured based on the following image fidelity metrics, 

1) Mean Squared Error( MSE) 

2) Peak signal-to-noise ratio(PSNR) 

3) Structural Similarity Index(SSIM) 

4) Feature Similarity Index(FSIM) 
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       Mean Squared Error (MSE) factor represents the average of the squares of 

the errors or deviations, i.e., the difference between the estimator and what is 

estimated. The Peak Signal Noise Ratio gives the ratio between the maximum 

possible power of a signal and the power of corrupting noise that affects the 

fidelity of its representation. Because many signals have a very wide dynamic 

range, PSNR is usually expressed in terms of the logarithmic decibel scale. 

PSNR is most commonly used to measure the quality of reconstruction. A high 

PSNR score indicates that the magnified image is free from distortions and is 

more likely to carry HF details. The PSNR of an image is defined by,  

 
             

    

     
  (5.1) 

where        
        

   
, W is the width of the image patches x and y, H is 

height of both the image patches. 

       SSIM index is a method for measuring the similarity between two 

images based on an initial uncompressed or distortion-free image as reference. 

The SSIM of the reconstructed image is obtained using, 

            
                    

   
    

        
    

     
  (5.2) 

where  
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where    ,    are constants. 

       FSIM is a similarity measurement based on comparison between image 

features like gray levels, texture with the coefficients  in the Fourier, structure, 

etc. 

5.2  RESULTS OF PROPOSED DEMOSAICING ALGORITHM 

       The standard demosaicing algorithms against which the results are 

evaluated include bilinear intepolation and edge corrected bilinear interpolation. 

Bilinear Interpolation - They process each component plane separately and find 

the missing levels by applying linear interpolation on the available ones, in both 

main directions of the image plane.  Considering the {GRG} structure, the 

missing blue and green values at the center pixel are respectively estimated by 

bilinear interpolation thanks to the following equations : 

    
 

 
                          (5.3) 

    
 

 
                        (5.4) 

       Edge corrected bilinear interpolation makes use of the edges which have 

much stronger luminance than chrominance components. The bilinear 

interpolation estimate is corrected by a measure of the gradient for the known 

colour at the pixel location. The gain factor α controls the intensity of such 

correction.  
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(a)                             (b)                            (c)                              (d) 

Fig. 5.2. Variation of test image output for (a) ground truth image (b) bilinear 

interpolation (c) edge corrected bilinear interpolation (d) proposed method 



38 
 

Table 5.1 and 5.2 summarizes the quantitative comparison of the proposed 

method with various demosaicing algorithms. Table 5.1 shows that the proposed 

demosaicing algorithm has the highest quantitative measures compared with 

other state-of-the-art algorithm. It is evident from Table 5.1, the PSNR index 

that the proposed algorithm reconstructs the image with minimum distortions 

and the high SSIM index validates that the image-level information is preserved 

by the proposed matrix-based implicit prior. From Table 5.2 where the 

demosaicing algorithms are compared based on similarity inidices, namely 

structural similarity index and feature simlarity index. The proposed method 

performs better compared to the other two considered algorithms for the images 

besides #11, where bilinear interpolation performs a better reconstruction. As 

shown in Figure. 5.3 qualitative evaluation between the reconstructed images 

from various algorithms clearly reveal that the edge corrected bilinear 

interpolation performs a better reconstruction. Thus, it is observed that the 

reconstruction varies with the image selected as well. Algorithm that works well 

for an image doesn’t have to work efficiently for all images in the set.  

 

 

  

 

 

 

           (a)                          (b)                           (c)                            (d) 

Fig. 5.3. Variation of test image #11 output for (a) ground truth (b)bilinear 

interpolation (c) edge corrected bilinear interpolation (d) proposed method 
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Image Bilinear 

Interpolation 

Edge Corrected Bilinear 

Interpolation 

Proposed 

method 

#1 26.4881/145.9733 27.5163/115.0988 27.5488/114.728 

#5 30.3223/60.3750 32.1644/42.5037 33.9301/41.6937 

#11 37.8748/21.1639 36.7924/10.8103 37.1407/12.5605 

#17 31.6560/44.4105 31.3591/47.5519 32.8057/42.0009 

#18 28.7281/87.1511 33.1792/31.2726 33.6016/30.7206 

Table 5.1: Comparison of output PSNR/MSE for different algorithms 

 

Image Bilinear 

Interpolation 

Edge Corrected Bilinear 

Interpolation 

Proposed 

method 

#1 0.9463/0.9839 0.9640/0.9916 0.9682/0.9923 

#5 0.9549/0.9908 0.9709/0.9961 0.9793/0.9969 

#11 0.9832/0.9942 0.9896/0.9983 0.9883/0.9983 

#17 0.9763/0.9923 0.9617/0.9960 0.9773/0.9968 

#18 0.9573/0.9764 0.9802/0.9956 0.9869/0.9958 

Table 5.2: Comparison of output SSIM/FSIM for different algorithms. 

 

5.3 RESULTS OF PROPOSED SUPER-RESOLUTION ALGORITHM 

 Generally super-resolution techniques have been used to improve the 

visual appeal of an image, and to extract finer details from the image. It has 

been extensively applied for surveillance camera images, medical diagnosis 

using images and in other industrial applications. Nowadays, the multifarious 

advantages of super-resolution have given rise to a deluge of applications. 

Notably, super-resolution finds many applications in images obtained in 
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space/underground exploration, underwater imaging, remote-sensing and in 

social media. 

       Each application has to be chosen carefully, taking into account the general 

structure and information content in the image. For example, in selfie images 

taken from the front camera of the smartphone, a typical image contains a 

strong background in terms of information complexity and a solid, smooth 

front-ground of facial information. So training the algorithm using structurally 

similar images leads to an improvement in the results leading to sharper details, 

edges and facial features. 

       In the medical application, images are standard, defined and are taken for a 

particular purpose like X-Ray imagery, MRI imagery etc. Thus the images fall 

into the same class. For example, in X-Ray images, the region of interest 

constitutes a very small proportion of the complete image. In an X-ray of an arm 

fracture, the desired information is concentrated in the bright parallel section 

(the wounded arm) whereas the other regions are void of data. We train our 

operator for that particular class of images with a predefined structure, leading 

to better results.   

      In another application called CFA imaging, the training is tricky. The 

images obtained are, strictly speaking, not the exact ground truth image. They 

are demosaiced images derived from a CFA image matrix incomplete with each 

colour component. To counter this, we can impose priors on the available CFA 

sub-spaces to improve the interpolated demosaiced output.  

 More training images were obtained from the Caltech 101 database 

available online at http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 

based from California Institute of Technology website. This dataset contains 

pictures of objects grouped into 101 categories, with about 40 to 800 images per 

category. The size of each image is roughly 300 x 200 pixels.  
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        The training and testing colour images are first converted into the YCbCr 

channel. Being the only channel that is sensitive to the human eye, our target 

being the enhancement of human visual perception, only the luminance channel 

is considered during super-resolution. The LR test images are artificially 

generated by down sampling the images using the Bicubic decimator.  

These down sampled LR images are then blown up to the size of the target HR 

image and are subsequently blocked contiguously into non-overlapping patches 

of size 27*27 as default. The LR test images are then super-resolved with a 

scale factor ‘s’ of either 2, 3 or 4 – the same with which the LR-HR training 

image pairs were generated.  

 

Figure 5.4: Sample training images 

 Qualitative and quantitative evaluations have been carried out to assess 

the effectiveness of the proposed algorithm. Qualitative evaluation of SR 

methods relies on a few attributes of the reconstructed image such as sharpness, 

naturalness, and granularity. The sharpness of an image is assessed based on the 

high frequency details it preserves. The naturalness of an image is affected by 

the artifacts present in it. Various artifacts such as ghosting, ringing, jagging, 

and staircase artifacts generally affect the quality of an image.  

 A visual comparison is made to assess the fidelity of the proposed 

algorithm qualitatively. The effectiveness of the proposed method is 

quantitatively evaluated based on a few objective performance metrics such as 

mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural 

similarity indices (SSIM/FSIM). A high PSNR score indicates that the scaled-
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up image is free from distortions and effectively reconstructs the HF details. 

Similarly, a high SSIM value (typically 1) implies that the scaled-up image has 

a very similar structure to its ground truth. The sample training images shown in 

Figures 5.4 are used to train the MVR operator and perform super-resolution 

and results are compared with the algorithms given by Yang (2013), Kim(2010) 

and bicubic interpolation. Table 5.3 and 5.4 summarizes the quantitative 

comparison of various SR algorithms on test images for 2x magnification. 

       For more comparison, 2  magnification of images is carried out with 5 

sample images from the McM dataset. Figure 5.5 depicts the qualitative visual 

comparison for these five images. Figure 5.5(a) depicts the test LR image. 

Figures 5.5(b) - 5.5(d) depict the SR images reconstructed by Yang et al.’s, Kim 

et al.’s, and bicubic interpolation. Figure 5.5(e) shows the proposed SR image. 

Test Image Yang et al. Kim et al. Bicubic Proposed 

#1 29.21/36.8405 30.08/38.4296 28.51/38.6784 32.2320/36.1936 

#5 35.2037/15.3167 36.1034/15.7789 35.3966/15. 6333 36.1903/15. 1459 

#11 36.0158/9.9365 36.9645/10.9005 35.3480/10.9985 37.7509/9.9141 

#17 33.5583/33.8607 33.7947/34.3309 33.5891/34.4502 34.8601/33.1241 

#18 31.4590/62.9132 32.2815/63.0309 30.21/62.5519 30.1246/62.1864  

Table 5.3: Comparison of output PSNR/MSE for different SR algorithms. 

Test Image Yang et al. Kim et al. Bicubic Proposed 

#1 0.9766/0.9754 0.9801/0.9787 0.9825/0.9748 0.9875/0.9817 

#5 0.9372/0.9701 0.9785/0.9882 0.9761/0.9833 0.9884/0.9898 

#11 0.9365/0.9766 0.9847/0.9815 0.9893/0.9834 0.9906/0.9875 

#17 0.9583/0.9730 0.9735/0.9757 0.9851/0.9769 0.9863/0.9808 

#18 0.9653/0.9699 0.9788/0.9712 0.9457/0.9535 0.9685/0.9562 

Table 5.4: Comparison of output SSIM/FSIM for different SR algorithms. 
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           (a)                      (b)                      (c)                    (d)                     (e) 

Fig 5.5: Variation of test image for different SR algorithms (a) Test LR image 

(b)Yang et.al (c) Kim et.al (d) Bicubic Interpolation (e)Proposed method 
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  In Yang et al.’s SR based on sparse representation model, two coupled 

dictionaries are trained simultaneously from random raw image patches. Based 

on a dictionary pre-t-rained from thousands of natural images, Yang et al.’s 

method seems to produce natural-looking results. Though Yang’s algorithm 

faithfully reconstructs natural-looking images, it can be observed from Table 

5.3 that the objective measures are not the best among other comparative 

algorithms. This is because the fine details in the image are not well preserved 

due to the fact that a universal dictionary used in this method fails to represent 

complex structures accurately. Due to the fact that a natural image priori is used 

to post-process the SR image, Kim et al.’s method effectively reproduces more 

visually appealing images. The PSNR and SSIM value for Kim et al.’s method 

is better than other comparative algorithms, as a post-processing with an image 

edge priori is carried out on the reconstructed image. 

 On the contrary, the proposed method preserves the sharp details and fine 

textures in most of the images without affecting the naturalness of the image. 

Also it is observed that the proposed method provides more photo-realistic 

details as it does not introduce any counterfeit fine details. The proposed 

method achieves the best PSNR and SSIM value which indicates that the 

proposed algorithm reconstructs the LR image with minimal distortions and a 

high SSIM value corroborates the effectiveness of the structural similarity 

which has been preserved by the proposed matrix-based regression algorithm. 

The proposed method performs better than other state-of-the-art SR approaches 

as it avoids vectorisation of image patch-pairs during training phase of the MVR 

operator, which intuitively preserves structural similarity and image-level 

information within patch-pairs. Also, as the MVR operator is trained with HR 

images captured by the rear camera of the smart-phone it effectively 

corresponds to the relation between LR-HR patch-pairs, thereby improving the 

performance.  
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           (a)                     (b)                    (c)                      (d)                    (e)           

Fig 5.6: Variation of local image output from image #11 (a) LR local image, 

(b)Yang et.al (c) Kim et.al (d) Bicubic Interpolation (e) Proposed method 

       The image in 5.6 (a) represents the local image from LR test image 

#11.Though the stripes in the table cloth are sharp in Figure 5.6(b), it is not the 

same pattern as in the ground truth as the fine details in the table cloth are not 

well preserved. In Figure 5.6 (c) and (d), the texture on the table cloth is blurred 

when compared with (b). The result in 5.6 (e) from our proposed method shows 

good improvement in resolution and preserves sharp texture details. 

       The performance of the proposed algorithm can be influenced by the 

training dataset used to train the MVR operator. To validate this, a performance 

evaluation based on variation in dataset is carried out. It is observed that the 

training images similar in structure as the test image lead to better results than 

when the training and testing images depict different scenes. This self-similarity 

improves the interdependency between the images as well as the image patches 

and results in a more robust and efficient MVR operator that results in improved 

output.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK  

 

6.1 CONCLUSION 

       In this work, an image reconstruction algorithm is proposed to reconstruct 

mosaics based on an improved interpolating method and is followed with an 

image super-resolution algorithm. The demosaicing algorithm introduces green 

channel’s edge information to interpolate green components firstly, then to 

reconstruct red and blue components by adopting fully reconstructed green 

plane. Our work proposes a demosaicing algorithm based on CFA edge 

information to remove the mosaic phenomenon, it reconstructs colour image by 

analysing local spatial gradient information.  Because the method uses the 

horizontal and vertical gradient details, information present in the edge pixels is 

preserved and hence provides good results. The edges and textures of scene can 

be preserved in the output, and the reconstructed image has good visual quality.  

The results show that this algorithm has good performance, when quantitatively 

verified.  

       Further, we implemented a novel matrix-based regression methodology 

instead of the traditional vectorisation approach. We found that matrix-based 

operators better model the image structural information available spatially, 

while the vector operators fail to preserve this structural information. Due to 

better modelling, the results of our algorithm are competitive when compared to 

other state of the art methods. We proposed a novel patch variance based 

sampling method to balance the computational cost of feature regression. The 

algorithm is verified using standard test images. 
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6.2 FUTURE WORK  

       The demosaicing of images with weak spectral correlation can be done for 

further improvement of this work. An integrated colour demosaicing algorithm 

with colour correction algorithm may be proposed for better enhancement. Also 

some evolutionary optimization technique can also be considered to enhance the 

results. For the case of super-resolution, we believe that implementing higher 

order manifold learning in matrix domain will lead to better results, because we 

preserve the manifold structure in matrix domain. The learning can also be 

assisted by better optimization techniques such as gradient descent, conjugate 

gradient descent and evolutionary optimization techniques such as honey bee 

optimization, and genetic algorithms. We can also use back-propagation to 

control the parameter error iteratively. Another avenue of research is to better 

model the image matrix and the cost function, considering the class of images 

and its structure.    
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