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1 Overview
In this supplemental material, we present additional material concerning the derivation of our
adaptive lighting algorithm based on radiosity, implementation details for our experiments,
and a small analysis of visual saliency in our network performance.

2 Adaptive Lighting
In the main paper, we presented our adaptive lighting algorithm that optimized over BNLOS.
In this section, we present the complete analytic derivations for radiosity for three bounce
light used in that algorithm. We mainly follow the approach of Klein et al. [3] in calculating
our radiosities.

Let S1,S2....SN be the N patches on the reflective LOS wall, light source denoted as p,
camera denoted as C and the NLOS patch denoted as NLOS. To calculate the radiosity along
a ray for three bounce light, we must first calculate its first and second bounces.

First Bounce (LOS):
p⇒ Si⇒C ∀i ∈ {1,N}.

When light travels from the source to a diffuse wall and bounces back to the camera, the
associated radiosity is given as the product of the reflectance of the surface ρi, the radiosity
of the incident light Bp, and the form factor Fip between the p and the ith patch, and the
visibility term Vi [1, 2]:

B f irst = Bi = ρiBpFipVi, ∀i ∈ {1,N}. (1)

The form factor calculates how much light is transferred from one patch to another. Since the
wall is divided into N patches, the first bounce radiosity associated with all the N patches is
calculated. It takes into account the distance between the surfaces, computed as the distance
between the center of each of the surfaces, and their orientation in space relative to each
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other, computed as the angle between each surface’s normal vector and a vector drawn from
the center of one surface to the center of the other surface:

Fi j =
cosθ j cosθi

π(x j− xi)2 ·Ai (2)

A visual depiction is shown in Figure 1. However the above equation does not account
for occlusion between the two patches. This is accounted by the visibilty term V (i, j):

Vi(~xa,~xb, ~Na) =

{
0, if k >= π

2 and k <= 3π

2
1, otherwise

where k = (~xa−~xb) · ~Na.
Substituting form factor and visibility terms into (1), we get the following expression for

first bounce radiosity:

B f irst = Bi = ρi ·Bp ·
(cosθp cosθi

π(xp− xi)2

)
·Ai ·Vi, ∀i ∈ {1,N}. (3)

Second Bounce (LOS):
p⇒ Si⇒ S j⇒C

for ∀i ∈ {1,N},∀ j ∈ {1,N}, j 6= i. In this case, light from the illuminating source hits the
diffuse wall and the gets reflected to another patch on the diffuse wall. This can be viewed
as the light taking two bounces and containing only LOS scene information when it reaches
the camera. Using the radiosity calculated from Equation( 3) as the radiosity illuminating a
second bounce patch, we get the expression for Bi:

B j = ρ jBiFjiVj (4)

∀i ∈ {1,N},∀ j ∈ {1,N}, j 6= i.

Third Bounce: For third bounces, we now have two subcases: when the ray only interacts
with LOS patches, and when the ray interacts with the NLOS patch. We treat each case
separately in our derivations.
LOS Condition

p⇒ Si⇒ S j⇒ Sk⇒C,

∀i ∈ {1,N},∀ j ∈ {1,N}, j 6= i,∀k ∈ {1,N},k 6= j.

Consider the scenario where the light after bouncing off two diffuse wall patches strikes
another diffuse wall patch. This can be viewed as the light taking three bounces and contain-
ing only LOS scene information when it reaches the camera. Using the radiosity calculated
from Equation (4) as the radiosity illuminating a third bounce patch, we get the expression
for Bk:

Bk = ρkB jFk jVk (5)

NLOS Condition
p⇒ Si⇒ NLOS⇒ Sk⇒C
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In the scenario where, after light after undergoing first bounce LOS reaches the NLOS
scene and then bounces to a diffuse wall patch beore reaching the camera, we can view that
as three bounce NLOS light. After the first bounce, the incident radiosity is given by the
condition Equation (3).

Bn = ρnBiFniVn (6)

∀ i ∈ {1,N},∀n ∈ {1,N}

Using Equation (6) as the radiosity of the light reaching the diffuse wall patch, we obtain the
third bounce as below:

Bk = ρkBnFknVk, (7)

∀ k ∈ {1,N}

Using Equation (3), Equation (4), Equation (5), and Equation (7), the total radiosity can be
calculated as the contribution due to the NLOS radiosity and LOS radiosity as below,

Btotal = BNLOS +BLOS

Using these radiosity contributions, we can then solve the optimization problems formu-
lated in the main paper, Section 4. The full steps are summarized in Algorithm 1.

Algorithm 1: Adaptive Lighting to calculate BNLOS

Step 1: Divide the LOS scene into N patches, calculate the surface normal and area
per patch.
Step 2: Calculate light source to LOS patch light transfer.
for LOS patch i=1:N do

Calculate the first bounce radiosity: Bi = ρiBaFia where Ba is the radiosity of the
illumination source.

end
Step 3: LOS patch to the NLOS object light transfer.
for LOS patch i=1:N do

Calculate the second NLOS bounce radiosity using Equation (4) and using Step 2
as the radiosity emitted by each LOS patch

end
Step 4: Third bounce light from LOS to camera.
for LOS patch i=1:N do

Calculate the final radiosity using Equation (7)
end
Step 5: Solve corresponding optimization problem (Equation 2 or Equation 3 in the
main paper) using radiosities from Step 4.

3 Energy-efficiency of Adaptive Lighting
When a spatially-varying light pattern is used instead of a spotlight source, the illumination
power is spread over the entire scene. This is counter to our stated goal of optimizing the
energy-efficiency for the lighting, particularly the distributed optimization algorithm in the
paper that operates under a power budget.
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Figure 1: Radiosity measures the radiative transfer of light between diffuse surfaces and
emitters based on their reflectance, viewing/occlusion, and geometric form-factors [1]. We
formulate an optimization to identify the patches in the LOS which maximize the NLOS
radiosity captured by the camera.

Figure 2: Network Architecture for Identification

To illustrate the effects of loss of power that occurs when you spread the light in a spatial
pattern, we conducted the following experiment. Consider a room with the reflective wall
divided into 100 patches. We illuminate the scene for a finite number of patches, and com-
pare our adaptive lighting algorithm versus floodlighting the scene. For floodlighting, the
incident illumination power is divided by the number of patches considered, and we mea-
sure the radiosity returned from NLOS. For our adaptive algorithm, we focus the incident
illumination power onto a particular set of patches given by the optimization. In Figure 3,
we see that our adaptive algorithm (green) returns higher NLOS radiosity than spreading the
light out in a floodlit pattern (blue). We believe this experiment shows the value of not using
spatially-varying lighting patterns for the same energy budget.

However, there is an interesting avenue for future research. One advantage is that spatially-
varying lighting could improve detection coverage over the NLOS, as opposed to our adap-
tive lighting method which requires N adaptive lighting patterns at test time to determine
where the object is located. We can imagine NLOS imaging schemes which utilize spatially-
varying lighting for coarse localization and detection, and then adaptive lighting for finer
localization.
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Figure 3: Plotting the NLOS radiosity returned by our adaptive lighting algorithm (green)
versus floodlighting the scene (blue). Choosing optimal patches to illuminate returns more
NLOS radiosity than spreading the illumination power evenly (as in a lighting pattern or
floodlit) for the same illumination power.

Object Localization
Adaptive Non-adaptive

BUNNY 1 2.41 cm 3.79 cm
BUNNY 2 1.32 cm 1.65 cm
BALL 1 2.89 cm 4.67 cm
BALL 2 1.61 cm 2.76 cm

Table 1: Additional real data results for four objects trained on the complex LOS wall 2.

4 Implementation Details
For the simulated data, we implement our CNNs using PyTorch version 0.4.1 on a single
NVIDIA GeForce GTX 1080 Ti GPU. Our datasets are of size 100,000 images for each spe-
cific wall and 64×64 resolution. We train using stochastic gradient descent with momentum
0.9 and learning rate λ = 0.0001 for 20 epochs until convergence for classification and 16
epochs until convergence for localization, with a 70 : 30 training/testing split.

For our hardware prototype, we built a room setup, constructed using wood, of dimension
35.6 cm × 35.6 cm × 35.6 cm. We 3D printed the walls and then spray-painted them to be
diffuse white. The real scene we use for the LOS is a variation of Wall 2. The Stanford bunny,
sphere and man silhouette of varying sizes were 3D printed and spray painted diffuse white
to help improve signal return back to the LOS. The wall was illuminated with an InFocus
IN3138HD projector. We used an aperture after the projector of black construction paper
with a small hole to focus the spot and emulate a spot light source. A Logitech C615 HD
WebCam captured images of the diffuse wall. We capture roughly 10,000 real images to use
for our datasets.

5 Additional Real Data Localization Results
For our real data, we also performed an ablative study for localization with other sizes of
spheres and bunnies. A bunny (BUNNY 1) with 5.5 cm width and 3.7 cm height was local-
ized with MSE 2.41/3.79 cm respectively for adaptive/non-adaptive method, while a larger
bunny (BUNNY 2) with 9 cm width and 7 cm height localized to 1.32/1.65 cm respec-
tively for adaptive/non-adaptive method. A sphere (BALL 1) of diameter 3 cm localized to
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Figure 4: Salient image regions used by Inception network is calculated using the method
from [4].

2.89/4.67 cm respectively for adaptive/non-adaptive, and a larger sphere (BALL 2) of diam-
eter 8 cm localized to 1.61/2.76 cm respectively for adaptive/non-adaptive. Note how as the
size of objects gets bigger, the localization becomes more accurate in general due to more
signal being reflected back from the NLOS.

6 Saliency
To investigate what parts of the image our network is finding the most salient information,
we utilize class-saliency maps from Simonyan et al. [4]. In Figure 4(a), we show the input
images and saliency maps for the sphere and bunny projected on a planar wall. Note how
the saliency of the sphere and bunny look qualitatively different, which probably explains
why the network has poor generalisation performance across objects it has never seen in
training before. In Figure 4(b), we show how the optimal patch returned by our adaptive
lighting algorithm has more saliency for the network compared to the second best patch.
This correlates with the improvement benefits we see with adaptive lighting.
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